In Situ Ellipsometric Monitoring of Gold Nanorod Metamaterials Growth

نویسندگان

  • Frances Morgan
  • Antony Murphy
  • William Hendren
  • Gregory Wurtz
  • Robert J Pollard
چکیده

An in situ transmission-based system has been designed to optically monitor the ellipsometry constants of a hyperbolic plasmonic metamaterial during electrochemical growth. The metamaterial, made from an array of vertically aligned gold nanorods, has demonstrated an unprecedented ability to manipulate the polarization of light using subwavelength thickness slabs, making in situ ellipsometric data a powerful tool in the controlled design of such components. In this work, we show practical proof-of-principle of this design method and rationalize the ellipsometric output on the basis of the modal properties of the nanorod metamaterial. The real-time optical monitoring setup provides excellent control and repeatability of nanostructure growth for the design of future ultrathin optical components. The performance of the ellipsometric method was also tested as a refractive index sensor. Monitoring refractive index changes near the metamaterial's epsilon near zero (ENZ) frequency showed a sensitivity on the order of 500°/RIU in the ellipsometric phase for a metamaterial that shows 250 nm/RIU sensitivity in its extinction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ, real time monitoring of surface transformation: ellipsometric microscopy imaging of electrografting at microstructured gold surfaces.

Surface chemical reactivity is imaged by combining electrochemical activation of a surface transformation process with spatiotemporal ellipsometric microscopy. An imaging ellipsometric microscope is built, allowing ellipsometric images of surfaces with a lateral resolution of ∼1 μm and a thickness sensitivity of ∼0.1 nm in air and 0.4 nm in a liquid. These performances are particularly adapted ...

متن کامل

Facile gold nanorod purification by fractionated precipitation.

An efficient and facile size- and shape-selective separation of gold nanorod (GNR) solutions is developed using a fractionated precipitation strategy. This convenient method has the benefit of eliminating nanoparticulate side products that can substantially deteriorate the quality of self-assembled nanostructures. The fabrication of advanced plasmonic metamaterials crucially depends on the capa...

متن کامل

Development of electrochemical aptasensor based on gold nanorod and its application for detection of aflatoxin B1 in rice and blood serum sample

Aflatoxins are a group of fungal mycotoxins produced mainly by molds, e.g. Aspergillus flavus and Aspergillus parasiticus. Among Aflatoxins, Aflatoxin B1 (AFB1) is the most toxic. Therefore, there is a prompt need for determination of AFB1 in food products. This paper reports an electrochemical aptasensor for accurate determination of AFB1, which was constructed by the using gold nanorod sensin...

متن کامل

Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating

In this paper, a fine gold nanostructure synthesized on selective planar microelectrodes in micro-chip is realized by using an advanced hybrid fabrication approach incorporating growth of nanorods (NRs) with gold electroplating. By this developed nanostructure, integration of in-situ surface-enhanced Raman spectroscopy (SERS) detection with electrochemical impedance spectroscopy (EIS) measureme...

متن کامل

Attomolar DNA detection with chiral nanorod assemblies

Nanoscale plasmonic assemblies display exceptionally strong chiral optical activity. So far, their structural design was primarily driven by challenges related to metamaterials whose practical applications are remote. Here we demonstrate that gold nanorods assembled by the polymerase chain reaction into DNA-bridged chiral systems have promising analytical applications. The chiroplasmonic activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017